
Test Case Prioritization Based on Method Call
Sequences

∗Jianlei Chi, ∗Yu Qu, ∗Qinghua Zheng, †Zijiang Yang, ∗Wuxia Jin, ∗Di Cui, ∗Ting Liu
∗Ministry of Education Key Lab for Intelligent Networks and Network Security

Xi’an Jiaotong University, Xi’an, China

Email: chijianlei@stu.xjtu.edu.cn, {quyuxjtu, qhzheng}@xjtu.edu.cn, {wx jin, cuidi, tliu}@sei.xjtu.edu.cn
†Department of Computer Science, Western Michigan University, Kalamazoo, MI 49008, USA

Email: zijiang.yang@wmich.edu

Abstract—Test case prioritization is widely used in testing with
the purpose of detecting faults as early as possible. Most existing
techniques exploit coverage to prioritize test cases based on the
hypothesis that a test case with higher coverage is more likely
to catch bugs. Statement coverage and function coverage are
the two widely used coverage granularity. The former typically
achieves better test case prioritization in terms of fault detection
capability, while the latter is more efficient because it incurs less
overhead.

In this paper we argue that static information such as
statement and function coverage may not be the best criteria for
guiding dynamic executions. Executions that cover the same set
of statements /functions can may exhibit very different behavior.
Therefore, the abstraction that reduces program behavior to
statement/function coverage can be too simplistic to predicate
fault detection capability. We propose a new approach that
exploits function call sequences to prioritize test cases. This
is based on the observation that the function call sequences
rather than the set of executed functions is a better indicator
of program behavior. Test cases that reveal unique function
call sequences may have better chance to encounter faults.
We choose function instead of statement sequences due to the
consideration of efficiency. We have developed and implemented
a new prioritization strategy AGC (Additional Greedy method
Call sequence), that exploit function call sequences. We compare
AGC against existing test case prioritization techniques on eight
real-world open source Java projects. Our experiments show that
our approach outperforms existing techniques on large programs
(but not on small programs) in terms of bug detection capability.
The performance shows a growth trend when the size of program
increases.

Index Terms—software testing, test case prioritization, call
behavior graph

I. INTRODUCTION

During development and maintenance, software continu-

ously evolves due to numerous reasons such as modifying

old features and adding new features. In order to avoid the

introduction of new bugs, it is necessary to apply regres-

sion testing that aims at detecting regressions and validating

software changes by using the existing test case suite [1].

However, regression testing can be very expensive. As reported

in some previous studies, a regression testing may last for more

than seven weeks [2], [3].

In order to alleviate the cost of regression testing, Test Case

Prioritization (TCP) seeks to find the ideal ordering of the test

cases, so that a regression testing obtains maximum benefit

under limited resources or when the testing is prematurely

halted at some arbitrary point.

Since the abstract definition does not specify f , there exist

various concrete ways to achieve test case prioritization. A

large number of approaches [4], [5], [6], [7], [8], [9], [10]

have been proposed that mainly focus on two aspects of test

case prioritization. The first is the criterion that measure the

effectiveness of a test case and the second is the strategy

that exploits the criterion to prioritize the test cases. Most

existing algorithms use structural coverage [4], [11], [12],

[13], [14] as the criteria, based on the hypothesis that a

test case with a higher coverage rate has a better chance to

detect faults. A coverage criterion at finer granularity, such

as statement coverage, typically detects faults sooner at a

cost of more overhead; while a coverage criterion at coarser

granularity, such as function coverage, gives faster but less

accurate prioritization. Both function coverage and statement

coverage are widely used in TCP today [14] and various

studies have examined their trade-off [15], [16], [17]. Based on

the criterion, different prioritization strategies can be adopted.

For example, in greedy strategy, [18], [2] test cases can be

ranked by their absolute coverage, i.e. select the one that has

the highest coverage among the remaining test cases, or by

the relative coverage, i.e. select the one that has the highest

new coverage not covered by already selected test cases.

We argue that structural coverage may not be the best

criteria to guide the prioritization of dynamic executions. What

the existing techniques try to achieve is to reduce program

behavior to statement or function coverage. However, such

abstraction leads to severe information loss and thus may lead

to inaccurate test case prioritization.

In this paper, we propose a new test case prioritization

technique that is based on call sequences. Compared with

structural coverage, we believe that call sequence is a better

indicator of the dynamic behavior of a program. Our hy-

pothesis is that the same call sequence may exhibit similar

program behavior and thus the test cases with the richest

call sequences should be considered first. Of course there

will still be information loss by reducing executions to call

sequences. But we believe the reduction is more accurate

than those obtained by structural coverage. While structural

coverage considers the vertices, our approach considers paths

251

2018 42nd IEEE International Conference on Computer Software & Applications

0730-3157/18/$31.00 ©2018 IEEE
DOI 10.1109/COMPSAC.2018.00039

along the edges. Based on our new criterion, we propose a new

prioritization strategy called Additional Greedy Call sequence

(AGC) that will be explained in Section III.

We have implemented our approach and multiple state-of-

the-art techniques, and compare their performance on eight

real-world open source Java projects. The experimental results

show granularity indeed makes a difference, as pointed out by

prior research [7], [1]. Statement-coverage based techniques

are the best when programs are small. However, our experi-

ments confirm that fine granularity incurs the larger overhead.

This is the main reason that we target function call sequence

instead of statement sequence. Indeed, our approach is the

most effective one in terms of APFD when the programs are

large.

The rest of this paper is organized as follows. Section II

summarizes the related work, followed by a detailed explana-

tion of our approach in Section III. In Section IV, we present

our empirical study. Section V concludes the paper.

II. RELATED WORK

Definition 1: [19] Given a test suite T , the set PT of

permutations of T , and a function f from PT to the real

numbers. The problem of test case prioritization is to find

T ′ ∈ PT such that ∀(T ′′)(T ′′ ∈ PT)(T ′′ �= T ′)[f(T ′) ≥
f(T ′′)].
Here, PT represents the set of all possible orderings of T and

f is a function that, applied to any such ordering, yields an

award value for that ordering. The goal of the prioritization

is to increase the likelihood of revealing faults earlier in the

testing process.

There are two aspects of TCP. The first is the criterion that

measure the effectiveness of a test case. As stated earlier most

existing algorithms use structural coverage [4], [11], [12], [13],

[14] as the criteria, based on the hypothesis that a test case

with a higher coverage rate has a better chance to detect faults.

Both function coverage and statement coverage are widely

used in TCP today [14] and various studies have examined

their trade-offs [15], [16], [17]. There exists other types of

structural coverage criteria, including branch-coverage [20],

Fault-Exposing-Potential (FEP) [20].

In this section, we focus on the related work on prioritiza-

tion strategies, especially those that we use to compare with

our proposed approaches.

A. Greedy Technique
The greedy technique [18], [2] attempts to select a test

case with the best coverage. Under this guideline there are

two strategies: the total strategy and the additional strategy.

The total strategy always selects the one that offers the best

coverage, in terms of certain criteria, among remaining test

cases regardless what have already been chosen. The additional

strategy selects the test case that covers the most statements,

function or units specified by the criterion that have not been

covered before.

B. Adaptive Random Technique

Adaptive Random Technique (ART) is a random-based test

case prioritization strategy proposed by Jiang et al. [21].

Prior empirical study [21] has shown that using the min
distance in ART typically leads to the best performance. Thus,

in this paper, we have implemented ART based on [21] and

chosen the min distance to compute the prioritized set.

C. Other Approaches

Mondal et al.[22] propose new approach for bi-objective

optimization of diversity and test execution time, using α-

Shape analysis of the Pareto front solutions. However, it

utilize static method sequence for analysis. Several other test

case prioritization techniques that leverage dynamic program

information have been proposed. Li et al. [10] exploit search-

based technique in test case prioritization. We have imple-

mented their approach with the hope to compare it against our

approach. However, our initial empirical study show that it is

not scalable so we decide to exclude it from our experiments.

III. OUR APPROACH

We treat the execution under each test case as a sub-

graph and apply complex network theory into our approach.

Our approach consists of three stages: Execution Monitoring,

Graph Construction, and Sampling and Prioritization.

During execution monitoring, we instrument the source code

to obtain traces that record the function call sequences under

each test case. Each trace is represented as a graph. Then at

the second stage, we integrate all the individual graphs into a

total graph. To make it more efficient, the first two stages are

interwoven and the total graph is built on the fly. Once the total

graph is obtained, the we apply two strategies to prioritize the

test cases: one is coverage based and the other is distribution

based.

A. Graph Model

Graph plays a key role in our approach, thus we first explain

the our graph model first. With the help of AspectJ-based

[23] instrument tool Kieker [24], we are able to obtain the

full signatures of an invoked method during an execution,

including the method name, the number, types and values of its

parameters, timestamps before and after the execution of the

method, the global unique session number and trace number,

the calling order and calling stack of the method. Based on the

collected information we are able to create calling graphs [25],

[26], [27] that model the method call relationship[28].

An example on how we collect method call traces and

construct calling graphs is given in Figure 1. The left figure is

the methodal call sequences obtained by the instrumentation

of a particular execution, where main calls func1 , func1 calls

func2, func2 calls func3, and so on. However, a straightforward

recording consumes significant amount of memory. We exploit

weight w defined in calling graph to merge duplicated nodes

in the graph. As shown in Figure 1 (b), there is only one node

corresponding to each method. In the example, main calls

func1 twice so w(main, func1) = 2. Each node may have

252

main()

func1()

func2()

func3()

func4()

func5()

func6()

main()

func1()

func2()

func3()

func1()

func5()

func3()

func4()

func5()

func6()

(a): original graph (b): call graph

Fig. 1. Calling graph construction.

Fig. 2. Different types of method calls

multiple incoming and outgoing edges. As a result, instead

of 10 nodes and 9 edges in Figure 1 (a), the corresponding

calling graph has only 7 nodes and 8 edges.

Matrix TG = [ei,j]m×n is utilized to integrate the set of

calling graphs {CG1, . . . CGi}. ei,j is the frequency of node

i calling node j.

B. Additional Greedy Method Call Sequence Strategy

We propose a prioritization strategy called additional greedy

method call sequence strategy (AGC) that exploit method call

sequences.

AGC follows the principle of greedy coverage strategy that

always selects the test case that covers the most units that have

not been covered so far. The principle is based on the hypoth-

esis that the more newly covered units the better chance to

reveal faults [18], [2]. Generally speaking, the coverage-based

critirion at the fine granularity outperforms the critirion at

coarse granularity in terms of fault detection capability, but at

a cost of larger overhead [19]. In our opinion, the method call

sequence based criterion is a good balance between statement

coverage and function coverage. Compared with the function

coverage criterion, we consider multiple methods instead of

individual method in isolation. Thus our prioritization is based

on richer information. Compared with statement coverage, our

unit is method thus incurs less overhead.

Algorithm 1 gives the pseudo-code of AGC. Figure 2

illustrates three types of method calls (or edges in the graph)

obtained from dynamic execution traces . The top one is a

method call from source code to source code, which has the

highest possibility of detecting faults. This is because all the

faults are in the source code itself, not in the test code. We

set the weight of this kind of edges to 2. The middle one is

a method call from test code to source code, which has some

possibility of detecting faults. We set the weight of such type

of edges to 1. The lowest edge is called from test code to test

code, which has no chance of detecting faults. Therefore the

weight of such type of edges is set to 0 . The total weight of

Algorithm 1 Main process of AGC
Input: test suite T
1: while Any test cases haven’t been calculated do
2: Calculate weight for each test case, weight = 0
3: while Any edges haven’t been calculated do
4: if The edge is called from test to test code then
5: weight = weight+0
6: else if The edge is called from test to source code then
7: weight = weight+1
8: else if The edge is called from source to source code then
9: weight = weight+2

10: end if
11: end while
12: Add weight to candidate set C = {< t1, w1 >,< t2, w2 >,}
13: end while
14: Use weight as coverage criterion, greedy additional strategy to prioritize T .
Output: test order T ′

each test case is calculated by accumulating the weight of the

edges of its calling graph.

In AGC, we do not use w weight functions in CG because

these test cases have many repetitions. The frequency of each

edge is not as effective as calculating the specificity of each

test case.

C. Random Precess Reduction

In the process of prioritization, some random selection

behavior may affect the stability of strategies. A random

selection may affect the fault detection efficiency especially

when there are lots of such choices.

In order to reduce random process, we introduce Lexico-

graphical Ordering proposed by Eghbali[29]. It augment addi-

tional greedy strategy by considering all the entities (method

consequences, functions, statements) even if they have been

covered in the previous steps. Entities that are covered less

will be given higher priorities.

Generally speaking, lexicographical ordering can reduce but

not eliminate randomness in the additional greedy strategy.

IV. EMPIRICAL STUDY

In this section, we conduct an empirical study to answer

the following two research questions. All the experiments are

carried out on a Lenovo PC with Intel Core i7-4790 3.60GHz

processor and 16GB DDR3 RAM.

1) RQ1: Is method call sequence an appropriate criterion

that can improve the performance of test case prioriti-

zation in regression testing?

2) RQ2: Are the prioritization strategies based on the new

criterion achieving a good trade-off between those based

on function-coverage and statement-coverage?

A. Implementation and Subject Programs

In our implmentation, we use Kieker [24] that can dynam-

ically instrument the classes loaded into the JVM through a

Javaagent command without any modification to the source

code. However, Kieker can only record coverage information

at the method level. Although sufficient for our approach, it

is not sufficient for the existing approaches that are based on

statement coverage. Thus we also use the Java testing tools

Jacoco [30] to collect coverage information at the statement

253

level. In order to measure fault detection rate, we inject

faults into our subject programs by using Java mutation tool

MuJava [31]. As concluded in previous work [32], [33],

mutation faults are close to real faults and are suitable for

software testing experiment.

We choose eight open source Java programs1 2 3 4 5 6 7

that have been widely used in previous studies [14], [32] from

the GitHub and Apache projects as our benchmark. For each

program there are about 1% to 5% test cases that cannot be

executed due to various reasons such as version mismatching

and environment, so we remove these test cases. Each of these

programs applies Junit auto testing framework.

Table I lists the eight subject programs that include their

names (Column 1), versions (Column 2), lines of code (Col-

umn 3) and number of methods (Column 4). The number of

edges in the total graphs is given in Column 5. Columns 6 and

7 give the number of test cases at class level and method level,

respectively. The last column shows the number mutations

generated by MuJava.

B. Design of the Empirical Study

In this empirical study, the only information we exploit

is the execution information obtained by dynamic instrument

tools. That is, we do not require extra information such as user

requirements and historical code changes. This applies to all

the approaches that we implement. Then we will explain the

experimental progress we utilize.

Algorithm 2 Compare TCP

1: Start and choose the program
2: Filter original faults
3: Utilize mutation tools to inject mutation faults
4: Randomly choose five faults
5: if Faults are repetitive then
6: return Step 4
7: end if
8: Creat faulty versions (1000 groups)
9: while All of the faulty versions have not been executed do

10: Select a faulty version as the source code
11: while Testing process hasn’t been finished do
12: Execute test suite in particular order
13: if ith Test case detects fault (s) then
14: Examine the test case
15: if Caused by inject mutations && Have not been detected then
16: ith Test case indeed detects fault (s)
17: end if
18: end if
19: end while
20: Calculate APFD metric
21: end while
22: Calculate average APFD metric

Algorithm 2 gives the pseudo-code on how to compare the

effectiveness of different TCP techniques. Generally speaking,

fault detection capability is widely used for evaluating TCP

techniques. Before starting our experiments we use unit testing

1http://commons.apache.org/proper/commons-io/
2http://commons.apache.org/proper/commons-lang/index.html
3http://www.joda.org/joda-time/
4http://commons.apache.org/proper/commons-math/
5http://www.jfree.org/jfreechart/
6http://ant.apache.org/
7http://closure-compiler.appspot.com/home

to eliminate buggy test cases in order to have controlled

experiments. After that we have a reasonable assumption that

the subject programs have no testing errors, we randomly

choose 5 different mutation faults which are generated by

MuJava and inject them into the program to simulate a faulty

program version.
In order to measure the effectiveness of fault detecting

capabilities for each prioritization technique, we choose Av-

erage Percentage of Faults Detected (APFD) metric, defined

by Equation 1, that is widely utilized in Regression Testing

domain [18], [2], [19], [20], [34].

APFD = 1− TF1 + TF2 + · · ·+ TFm

nm
+

1

2n
, (1)

where TFi is the first fault detecting location that detects fault

i in this prioritization order, n is the number of test cases, and

m is the number of faults. Since we create 1000 faulty versions

for each subject program, we calculate 1000 APFD values and

utilize the average metric for the evaluation.

C. Experiments
1) Performance: In this subsection, we present experimen-

tal data to answer the two research questions. The goal of

RQ1 is to justify the effectiveness of method call sequences in

regression testing prioritization. Figure 3 shows the boxplots

of the APFD values for all the TCP techniques, the x-axis

represents different techniques as follows:

• AGC: Additional Greedy Method Call Sequence Tech-

nique;

• ASC: Additional Greedy Statement-coverage Technique;

• AFC: Additional Greedy Function-coverage Technique;

• TFC: Total Greedy Function-coverage Technique;

• ART: Adaptive Random Technique;

• NO: Natural Order (Represent the result without any

prioritization, which is tested in alphabetical order).

In Table II, the TCP technique that has the best performance

is marked in red and the next best is marked in blue.
Based on these boxplots, we can make the following some

observations. Firstly, an interesting phenomenon is that with

the size of the programs size grows, the performance of AGC

also has a continuous growth trend compared with traditional

TCP techniques. For example, in the program Commons.io,

the median APFD values of the AGC, ASC and AFC are

0.7766, 0.7998, and 0.7899, respectively. In the program

Commons.lang, the median APFD value of the ASC technique

is 0.6762 followed by AFC, AGC, TFC, ART and NO.
However, in large subject programs such as Jfreechart,

Google Closure Compiler with LOC ranging from 56039

to 140237, the performance of AGC is comparable or even

better than ASC. For example, in the program Google Closure
Compiler, the median APFD value of AGC is 0.9113, followed

by ASC, ART, AFC, TFC and NO.
Previous results in RQ1 have shown that the method call

sequence based criterion is competitive with function-coverage

criterion at the same granularity and performs better in big-

sized programs. Even when comparing with finer granularity, it

254

TABLE I
BASIC INFORMATION OF PROGRAMS (ORDERED BY LOC)

Subject Programs version LOC Methods Edges
TCnum

(class-level)
TCnum

(method-level)
Mutant num

Commons.io 2.4 9957 764 1227 84 903 9241

Commons.lang 3.5 26578 2143 4292 137 2883 37466

Jodatime 2.1 27213 3583 11412 154 3975 38378

Commons.math 2.2 56039 3936 9584 264 1859 192791

Jfreechart 1.0.19 98335 6974 16086 359 2300 37271

Apache.ant 1.9.7 108132 8195 21756 233 1907 70320

Commons.math3 3.6.1 105191 7257 20251 510 4545 339774

Google Closure Compiler v20160713 140237 10774 49182 306 10824 19935

AGC AFC ASC TFC ART NO

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
P

F
D

Commons.io

AGC AFC ASC TFC ART NO
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
P

F
D

Commons.lang3

AGC AFC ASC TFC ART NO

0.4

0.5

0.6

0.7

0.8

0.9

1

A
P

F
D

Jodatime

AGC AFC ASC TFC ART NO

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
P

F
D

Commons.math

AGC AFC ASC TFC ART NO

0.4

0.5

0.6

0.7

0.8

0.9

1

A
P

F
D

Jfreechart

AGC AFC ASC TFC ART NO

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
P

F
D

Apache.ant

AGC AFC ASC TFC ART NO

0.2

0.4

0.6

0.8
A

P
F

D

Commons.math3

AGC AFC ASC TFC ART NO

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
P

F
D

Google Closure Compiler

Fig. 3. Result for our techniques and traditional TCP techniques on 8 open source programs. The box and whisker plots represent the values of APFD metric
for different TCP techniques. The x-axis represents the different techniques and the y-axis represents the APFD values. The central box of each plot represents
the values from 25 to 75 percentage.

TABLE II
COMPARISON OF AVERAGE APFD VALUES (%) FOR DIFFERENT

TCP TECHNIQUES

Subject Programs AGC ASC AFC TFC ART NO
Commons.io 77.66 79.98 78.99 72.11 62.10 58.71

Commons.lang 66.53 67.62 66.94 60.70 59.32 50.04

Jodatime 80.30 83.69 81.81 81.00 78.07 79.16

Commons.math2 67.64 74.69 66.27 62.18 69.47 60.81

Jfreechart 82.84 78.47 78.78 76.15 87.05 56.52

Apache.ant 78.62 82.59 78.21 75.67 55.40 73.08

Commons.math3 73.15 67.43 66.37 60.83 66.15 39.58

Google Closure Compiler 91.13 89.44 84.41 76.52 89.52 62.64

TABLE III
PRIORITIZATION COST FOR THE THREE DIFFERENT

COVERAGE CRITERIA TECHNIQUES.

Subject Programs
Time Cost

(AFC)
Time Cost

(AGC)
Time Cost

(ASC)
Commons.io 1s 1s 1s

Commons.lang 2s 13s 65s

Jodatime 5s 301s 1361s

Commons.math2 8s 139s 322s

Apache.ant 43s 309s 1093s

Google Closure Compiler 390s 7794s 22546s

Jfreechart 16s 193s 468s

Commons.math3 60s 806s 2597s

outperforms statement-coverage in large programs Jfreechart,
Commons.math3 and Google Closure Compiler.

2) Time Usage: Table III answers the RQ2 by comparing

the time usage of the three additional greedy strategies ASC,

AFC and AGC that are based on three criteria statement, func-

tion, and method call sequence, respectively. Other techniques

are not in this table because we just want to compare the

effectiveness of different granularities, not sampling strategies.

We try our best to use the similar data structure in order to

avoid the noise and the interrupt of the raw data. It can be

observed that AFC is most efficient, followed by AGC and

then ASC. AGC uses one-third to one-fifth of the time used

by ASC. Overall, if developers want to obtain a sweet spot

between fault detection capability and prioritization cost, we

believe our method call sequence technique is competitive with

other TCP techniques, especially in large programs.

3) Evaluation: Experiments above shows that our AGC

technique performs better in programs of big size, even better

than statement-granularity in some programs. The reason

that we think is the discrimination of test cases in different

granularities.

We counted th entity growth in eight programs. Based on the

space constrains, the result figure is not given in this paper. We

utilize three prioritization techniques in different granularities.

Each technique we count the percentage of entity coverage

255

(Function, Call Sequence, Statement) by executed test cases.

As the same reason in time usage experiment, other techniques

are not considered in order to control variables.

We find that when AGC performs better than AFC, the

curve of AGC is detached obviously with the curve of AFC. In

other words, test cases in edge(call sequence)-granularity are

more discriminable than those in function-granularity. Those

test cases with more unique call sequences will be labeled as

fault-prone candidates and put into the front of the test order.

Big-sized programs contain complex structure and more edges,

but not the same growth rate of functions. That is the reason we

think our technique shows up a growth trend of performance

with the size of the program increases.

V. CONCLUSION

In this paper, we presented a TCP criterion that is based

on method call sequences. As traditional coverage-based TCP

techniques often face the problem to balance the prioritization

efficiency and effectiveness. We believe the edge information

that corresponds to method call sequences in our graph model

offers a good trade-off between the two factors. Based on

the new criterion we have implemented the prioritization

algorithm AGC.

We have conducted experiments on our graph-based TCP

techniques and other traditional TCP techniques on eight open

source programs. Experimental results indicate that AGC is

particular effective on large programs. The reason we believe

is that these programs have complex structural information

and some bugs are hard to be detected by the traditional

function-coverage criterion. As for efficiency, as expected our

approach is between the function-coverage and statement-

coverage techniques. Edge information in our graph model

performs well as a trade-off between fault detection capability

and prioritization cost.

VI. ACKNOWLEDGMENT

This work was supported by National Key R&D Program

of China (2016YFB1000903), National Natural Science Foun-

dation of China (61772408, 61721002, 61532015,61702414)

and Ministry of Education Innovation Research Team

(IRT 17R86)

REFERENCES

[1] Y. Lu, Y. Lou, S. Cheng, L. Zhang, D. Hao, Y. Zhou, and L. Zhang,
“How does regression test prioritization perform in real-world software
evolution?” in ICSE. ACM, 2016, pp. 535–546.

[2] G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold, “Test case
prioritization: An empirical study,” in ICSM. IEEE, 1999, pp. 179–
188.

[3] Y.-C. Huang, K.-L. Peng, and C.-Y. Huang, “A history-based cost-
cognizant test case prioritization technique in regression testing,” Journal
of Systems and Software, vol. 85, no. 3, pp. 626–637, 2012.

[4] S. Yoo and M. Harman, “Regression testing minimization, selection and
prioritization: a survey,” Software Testing, Verification and Reliability,
vol. 22, no. 2, pp. 67–120, 2012.

[5] R. H. Rosero, O. S. Gmez, and G. Rodrguez, “15 years of software
regression testing techniquesa survey,” International Journal of Software
Engineering and Knowledge Engineering, vol. 26, no. 05, pp. 675–689,
2016.

[6] D. Hao, L. Zhang, and H. Mei, “Test-case prioritization: achievements
and challenges,” Frontiers of Computer Science, vol. 10, no. 5, pp. 769–
777, 2016.

[7] H. Mei, D. Hao, L. Zhang, L. Zhang, J. Zhou, and G. Rothermel, “A
static approach to prioritizing junit test cases,” TSE, 2012.

[8] D. Hao, L. Zhang, L. Zhang, G. Rothermel, and H. Mei, “A unified test
case prioritization approach,” TOSEM, vol. 24, no. 2, p. 10, 2014.

[9] Y. Jia and M. Harman, “An analysis and survey of the development of
mutation testing,” TSE, 2011.

[10] Z. Li, M. Harman, and R. M. Hierons, “Search algorithms for regression
test case prioritization,” TSE, vol. 33, no. 4, 2007.

[11] S. Elbaum, A. Malishevsky, and G. Rothermel, “Incorporating varying
test costs and fault severities into test case prioritization,” in ICSE. IEEE
Computer Society, 2001, pp. 329–338.

[12] G. Rothermel, S. Elbaum, A. Malishevsky, P. Kallakuri, and B. Davia,
“The impact of test suite granularity on the cost-effectiveness of regres-
sion testing,” in ICSE. ACM, 2002, pp. 130–140.

[13] C. Catal and D. Mishra, “Test case prioritization: a systematic mapping
study,” SQJ, vol. 21, no. 3, pp. 445–478, 2013.

[14] Q. Luo, K. Moran, and D. Poshyvanyk, “A large-scale empirical compar-
ison of static and dynamic test case prioritization techniques,” in FSE.
ACM, 2016, pp. 559–570.

[15] S. McMaster and A. Memon, “Call-stack coverage for gui test suite
reduction,” TSE, vol. 34, no. 1, pp. 99–115, 2008.

[16] D. Marijan, A. Gotlieb, and S. Sen, “Test case prioritization for
continuous regression testing: An industrial case study,” in ICSM. IEEE,
2013, pp. 540–543.

[17] S. W. Thomas, H. Hemmati, A. E. Hassan, and D. Blostein, “Static test
case prioritization using topic models,” Empirical Software Engineering,
vol. 19, no. 1, pp. 182–212, 2014.

[18] G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold, “Prioritizing test
cases for regression testing,” TSE, vol. 27, no. 10, pp. 929–948, 2001.

[19] S. Elbaum, A. G. Malishevsky, and G. Rothermel, Prioritizing test cases
for regression testing. ACM, 2000, vol. 25, no. 5.

[20] ——, “Test case prioritization: A family of empirical studies,” IEEE
transactions on software engineering, vol. 28, no. 2, pp. 159–182, 2002.

[21] B. Jiang, Z. Zhang, W. K. Chan, and T. Tse, “Adaptive random test case
prioritization,” in ICSE. IEEE Computer Society, 2009, pp. 233–244.

[22] D. Mondal, H. Hemmati, and S. Durocher, “Exploring test suite diver-
sification and code coverage in multi-objective test case selection,” in
ICST. IEEE, 2015, pp. 1–10.

[23] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G.
Griswold, “An overview of aspectj,” in European Conference on Object-
Oriented Programming. Springer, 2001, pp. 327–354.

[24] A. Van Hoorn, J. Waller, and W. Hasselbring, “Kieker: A framework
for application performance monitoring and dynamic software analysis,”
in Proceedings of the 3rd ACM/SPEC International Conference on
Performance Engineering. ACM, 2012, pp. 247–248.

[25] Y. Qu, X. Guan, Q. Zheng, T. Liu, J. Zhou, and J. Li, “Calling
network: A new method for modeling software runtime behaviors,” ACM
SIGSOFT Software Engineering Notes, vol. 40, no. 1, pp. 1–8, 2015.

[26] M. Fan, J. Liu, X. Luo, K. Chen, T. Chen, Z. Tian, X. Zhang, Q. Zheng,
and T. Liu, “Frequent subgraph based familial classification of android
malware,” in ISSRE. IEEE, 2016, pp. 24–35.

[27] M. Fan, J. Liu, W. Wang, H. Li, Z. Tian, and T. Liu, “Dapasa: detecting
android piggybacked apps through sensitive subgraph analysis,” TIFS.

[28] M. Fan, J. Liu, X. Luo, K. Chen, Z. Tian, Q. Zheng, and T. Liu, “Android
malware familial classification and representative sample selection via
frequent subgraph analysis,” TIFS, 2018.

[29] S. Eghbali and L. Tahvildari, “Test case prioritization using lexicograph-
ical ordering,” TSE, vol. 42, no. 12, pp. 1178–1195, 2016.

[30] M. Hoffmann, B. Janiczak, E. Mandrikov, and M. Friedenhagen, “Jacoco
code coverage tool. online, 2009,” 2016.

[31] Y.-S. Ma, J. Offutt, and Y. R. Kwon, “Mujava: An automated class
mutation system,” STVR, 2005.

[32] R. Just, D. Jalali, L. Inozemtseva, M. D. Ernst, R. Holmes, and G. Fraser,
“Are mutants a valid substitute for real faults in software testing?” in
FSE. ACM, 2014, pp. 654–665.

[33] J. H. Andrews, L. C. Briand, and Y. Labiche, “Is mutation an appropriate
tool for testing experiments?” in ICSE. ACM, 2005, pp. 402–411.

[34] S. Elbaum, P. Kallakuri, A. Malishevsky, G. Rothermel, and S. Kanduri,
“Understanding the effects of changes on the cost-effectiveness of re-
gression testing techniques,” Software testing, verification and reliability,
vol. 13, no. 2, pp. 65–83, 2003.

256

